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ABSrRACT

The horizontal distance A(x) ',7G(F(x)) - x has been shown by Doksum

(1974) to be a useful measure of the difference, at each x, between the

populations defined by continuous distribution functions F(x) and G(x). .

Here we assue that G is known, and we develop a Bayesian nonparametric

estimator k(x) of A(x) based on a random sample of n X's from F. The

estimator Wn is, for weighted squared-error loss, Bayes with respect to

Ferguson's (1973) Dirichlet process prior. Using a result of Korwar and

Hollander (1976), the Bayes risk of I is evaluated for the case when G isn
uniform. Saou-slon For
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1. Introduction.

When F and G are continuous distribution functions, the horizontal

distance

A(x) - G 1 (F(x)) - x, x real, (1)

has been shown by Doksum (1974) to be a useful measure of the difference,

at each x, between F and G. Under suitable regularity, Doksum shows that

A(x) is essentially the only function satisfying

X + A(X) d Y,(2)

where, in (2), X is distributed according to F, Y is distributed according to

G, and '4" means "has the same distribution as."

When the linear model

F(x) - G(x + A), for all x, (3)

holds, where A is a constant, then A(x) S A (and, of course, when F E G,

Ax) 0.)

When one observes a random sample of n X's from F and an independent

random sample of m Y's from G, Doksum suggests estimating A (x) by

2(x) - G 1'(Fn(x)) - x, (4)

where N- m+ n and F, Gm are the empirical distribution functions based on

the X's and Y's, respectively. Doksum also derives a simultaneous confidence

band for A(x) and shows that N{A(x) - A(x)) converges weakly to a Gaussian

process.
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In this paper we consider the one-sample problem where G is kown and

(just) a random sample of n X's from F is available for estimating A(x).

One natural estimator for this problem is the one-sample limit (m P-) of

Doksum's estimator !N. This one-sample limit is

. (x) - G1 (Fx)) - x. (5)

The estimator a n does not utilize prior information about the unknown F. Our
approach is Bayesian and leads to an estimator which does use prior infor- ation

about F.

We assume that F is a zwdom distribution function chosen according to

Ferguson's (1973) Dirichlet process prior (Definition 2.2) with parameter cL(),

a completely specified measure on the real line R with the Borel a-field B.

A defect to this approach is that the randomly chosen F will not be continuous

(Ferguson's Dirichlet process prior chooses, with probability one, a discrete

distribution) and thus the desirability of estimating A(x) is slightly

diminished. Nevertheless, in this case A(x) remains a useful measure of the

distance between F and G at x, and the resulting estimator 1n(x) combines

sample information and prior information in an effective manner.

Our loss function is

4L(, A) - f(a(x) - A(x))2dW(x), (6)

where A is an estimator of a and W is a finite measure on CR, B). A general
expression for the Bayes estimator n is given in Section 3, and explicit

'u 
n

expressions for An are obtained for the cases when G is (i) exponential and

(ii) uniform. Furthermore, in thetmifofM case we derive the Bayes risk of ln"

Section 2 contains preliminaries relating to the Dirichlet process.
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2. Dirichlet Process Preliminaries.

This section briefly gives some definitions and theorems associated with

the Dirichlet process. For further details the reader is refered to

Ferguson (1973).

DEFINITION 2.1 (Ferguson). Let Z1, ... , Zk be independent random

variables with Z having a gamma distribution with shape parameter a a 0 and

scale parameter 1, j = 1, ... , k. Let aj > 0 for some j. The Diriohlet

distribution with parameter (a1 , ... , ak), denoted by D(al, i., ak , is

defined as the distribution of (YI, Y k' where Y. = Z Z., j - 1, ... , k.

k I J 1
Since Y . 1 1, the Dirichlet distribution is singular with respect

to Lebesgue measure in k- .cioi±,l space. If aj = 0, the corresponding Y

is degenerate at zero. If however a, > 0 for all j, the (k - l)-dimensional

distribution of (Y1, ..." Yk-1 ) is absolutely continuous with density

f(Yl# ... ' Yk-l1P ... I ak) (7)

r(- t + ... a k-i a .- l k- - 1 5(
r=a " rk nj~ y.j )(1 - jP Y) s '

k-i
where S is the simplex S = {(y 1 , "." yk-1): Yj z 0, l y. < 11.

j=l

DEFINITION 2.2 (Ferguson). Let (X, A) be a measurable space. Let a be a

non-null finite measure (nonnegative and finitely additive) on (X, A). We say

P is a Dirichlet prooess on (X, A) with parameter a if for every k - 1, 2,

and measurable partition (B1 , ... , Bk) of X, the distribution of

(P(B)..., P(B)) is Dirichlet with parameter ((B)..., (Bk)).

_ i
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DEFINITION 2.3 (Ferguson). The X-valued random variables X1 , ... ,X n

constitute a eample of size n from a Dirichlet process P on (X, A) with

parameter a if for any m 1 1, 2, ... a measurable sets A,, ... , Am, C, ... , nn

QoX £ C1 , ... , CnIP(Ai), ... , P(Am), P(C1 ), *.., P(Cn)) = R P(C i ) a.s.,

where Q denotes probability.

THEORM 2.4 (Ferguson). Let P be a Dirichlet process on (X, A) with

parameter a. and let XK, ... , X n be a sample of size n from P. Then the

conditional distributioon of P given xK, ... is a Diriehlet process on
n

(X, A) with parameter 0 = a + whe, for x K, A e A 6x (A) 1 if
i=l c A 0

x e A, 0 o therwise 8 .



5

3. A Bayes Estimator of the Horizontal Distance.

We suppose that F is chosen according to a Dirichlet process prior on

(R, B) with parameter a. With the loss function given by (6), the Bayes

estimator for the no-sample problem is found by minimizing the right-hand-side

of (8),

EL(I, A) = JE(W(x) - A(x)) dW(x), (8)

where the expectation is with respect to F. The estimator is obtained by

minimizing E(X(x) - A(x))2 for each x, yielding

W(x) = E(A(x)) E{G- F(x)} - x. (9)

We next evaluate (9) in the cases where (i) G is exponential and (ii) G is

uniform.

3.1. The Case Where G is Exponential: Let G(x) = 1 - exp(-Ax), x > 0,

and 0 for x < 0, for some A > 0. Then

G'l(x) _A_ -k I n(l -x), 0 < x < 1,

and (9) reduces to

W(x) {B(Ca', B')} [-X-1 n(l - y)ya'-'(l - y) 8 "ldy - x., (10)
0

,ilereB(a', B') ( r(')r(0')/r(a' + o'). Equation(10) makes use of the fact

that for each x, F(x) is distributed according to the Beta distribution with

parameters a' a((--, x]), 8' = a(R) - a'. (To see this use Definition 2.2

with the measurable partition B1 (--, xj, B2 = R - B.) Thus, for the
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"no-sample" problem, by expanding In(l - y) in a power series, we obtain

I-1 1 M 'j- B'-1
ACx) OT f X YY,1,,+ - y) dy -x

- A I  B(a' + j, 8')/{jB(a', 0')} - x.
j=1

Using Theorem 2.4, the Bayes estimator when a sample X1 , ... , Xn is

available from F, is

A n(x) = E1  [B(a" + j, 8"')/{jB(a", W")}] - x, (1i)
j=1

where
n" o C--,xA) + i - C -- x ,

of = (R) + n - ax.

3.2. The Case Where G is Uniform: Let G(x) =0 for x < a, (x -a)/ - a)

for a :9 x :5 b, and 1 for x > b, for some a < b. Then (9) reduces to

1

(x) = f'C(b - a) + a.{B(a ', B')} y (1- y)O, 1 dy -x
0

= a + (b - a){B(a' + 1, B')/B(', 8')) - x

- a + (b - a){a'/(I' + 8')) - x

a + (b -a)Fo(x) -x,

where

F0(x) = c(C-c, x])/a(R), x e R,

can be interpreted as the "prior guess" at F.
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Thus, from Theorem 2.4, when a sample XI , ... , Xn is available from F,

the Bayes estimator is

(x b-aP()X, X eR, (12)

where
n

n x {a((--, x]) + . (C-c, x]}}/{cz(R) + n}.i=l 2 *

The minimum Bayes risk S(a) of An(12) can be computed using results of

Korwar and Hollander (1976). Korwar and Hollander obtained the minimum Bayes

risk R(a) of the estimator Vn against weighted squared error loss to be

R(a) = [aCR)/{(a(R) + 1)(a(R) + n)}]fF0 Cx)(l - Fx))d114x).

(See equation (2.19) of Hollander and Korwar (1976) and replace the m of

that equation with n here.) It i mediately follows that S(a) = (b - a)2RCa).

We note that we can also directly obtain the risk Tea) (say) of , a-le

limit of Doksum's estimator in (see equation (5)) with respect to the

Dirichlet process prior with parameter a in this case when G is uniform.

We find

AnCx) = a + Cb - a)Fn(x) - x, x e R,

where Fn (x) is the empirical distribution function of the X's. Using (3.3)

of Korwar and Hollander (1976) we obtain Tea) = (b - a) 2(l + a(R)/n)R(a).

I~'t
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